Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 130(5): 1265-1281, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820016

RESUMO

After rostral spinal cord injury (SCI) of lampreys, the descending axons of injured (axotomized) reticulospinal (RS) neurons regenerate and locomotor function gradually recovers. Our previous studies indicated that relative to uninjured lamprey RS neurons, injured RS neurons display several dramatic changes in their biophysical properties, called the "injury phenotype." In the present study, at the onset of applied depolarizing current pulses for membrane potentials below as well as above threshold for action potentials (APs), injured RS neurons displayed a transient depolarization consisting of an initial depolarizing component followed by a delayed repolarizing component. In contrast, for uninjured neurons the transient depolarization was mostly only evident at suprathreshold voltages when APs were blocked. For injured RS neurons, the delayed repolarizing component resisted depolarization to threshold and made these neurons less excitable than uninjured RS neurons. After block of voltage-gated sodium and calcium channels for injured RS neurons, the transient depolarization was still present. After a further block of voltage-gated potassium channels, the delayed repolarizing component was abolished or significantly reduced, with little or no effect on the initial depolarizing component. Voltage-clamp experiments indicated that the delayed repolarizing component was due to a noninactivating outward-rectifying potassium channel whose conductance (gK) was significantly larger for injured RS neurons compared to that for uninjured neurons. Thus, SCI results in an increase in gK and other changes in the biophysical properties of injured lamprey RS neurons that lead to a reduction in excitability, which is proposed to create an intracellular environment that supports axonal regeneration.NEW & NOTEWORTHY After spinal cord injury (SCI), lamprey reticulospinal (RS) neurons responded to subthreshold depolarizing current pulses with a transient depolarization, which included an initial depolarization that was due to passive channels followed by a delayed repolarization that was mediated by voltage-gated potassium channels. The conductance of these channels (gK) was significantly increased for RS neurons after SCI and contributed to a reduction in excitability, which is expected to provide supportive conditions for subsequent axonal regeneration.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Traumatismos da Medula Espinal , Animais , Canais de Potássio/fisiologia , Neurônios/fisiologia , Potenciais da Membrana/fisiologia , Lampreias , Medula Espinal
2.
Cells ; 10(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34440690

RESUMO

Following spinal cord injury (SCI) for larval lampreys, descending axons of reticulospinal (RS) neurons regenerate, and locomotor function gradually recovers. In the present study, the electrophysiological properties of uninjured (left)-injured (right) pairs of large, identified RS neurons were compared following rostral, right spinal cord hemi-transections (HTs). First, changes in firing patterns of injured RS neurons began in as little as 2-3 days following injury, these changes were maximal at ~2-3 weeks (wks), and by 12-16 wks normal firing patterns were restored for the majority of neurons. Second, at ~2-3 wks following spinal cord HTs, injured RS neurons displayed several significant changes in properties compared to uninjured neurons: (a) more hyperpolarized VREST; (b) longer membrane time constant and larger membrane capacitance; (c) increased voltage and current thresholds for action potentials (APs); (d) larger amplitudes and durations for APs; (e) higher slope for the repolarizing phase of APs; (f) virtual absence of some afterpotential components, including the slow afterhyperpolarization (sAHP); (g) altered, injury-type firing patterns; and (h) reduced average and peak firing (spiking) frequencies during applied depolarizing currents. These altered properties, referred to as the "injury phenotype", reduced excitability and spiking frequencies of injured RS neurons compared to uninjured neurons. Third, artificially injecting a current to add a sAHP waveform following APs for injured neurons or removing the sAHP following APs for uninjured neurons did not convert these neurons to normal firing patterns or injury-type firing patterns, respectively. Fourth, trigeminal sensory-evoked synaptic responses recorded from uninjured and injured pairs of RS neurons were not significantly different. Following SCI, injured lamprey RS neurons displayed several dramatic changes in their biophysical properties that are expected to reduce calcium influx and provide supportive intracellular conditions for axonal regeneration.


Assuntos
Potenciais de Ação , Cálcio/metabolismo , Regeneração Nervosa , Neurônios/fisiologia , Petromyzon/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Larva/metabolismo , Larva/fisiologia , Potenciais da Membrana , Neurônios/metabolismo , Petromyzon/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/metabolismo
3.
Mar Genomics ; 46: 29-40, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30878501

RESUMO

The lamprey is a popular animal model for a number of types of neurobiology studies, including organization and operation of locomotor and respiratory systems, behavioral recovery following spinal cord injury (SCI), cellular and synaptic neurophysiology, comparative neuroanatomy, neuropharmacology, and neurodevelopment. Yet relatively little work has been done on the molecular underpinnings of nervous system function in lamprey. This is due in part to a paucity of gene information for some of the most fundamental proteins involved in neural activity: ion channels. We report here 47 putative ion channel sequences in the central nervous system (CNS) of larval lampreys from the predicted coding sequences (CDS) discovered in the P. marinus genome. These include 32 potassium (K+) channels, six sodium (Na+) channels, and nine calcium (Ca2+) channels. Through RT-PCR, we examined the distribution of these ion channels in the anterior (ARRN), middle (MRRN), and posterior (PRRN) rhombencephalic reticular nuclei, as well as the spinal cord (SC). This study lays the foundation for incorporating more advanced molecular techniques to investigate the role of ion channels in the neural networks of the lamprey.


Assuntos
Sistema Nervoso Central , Canais Iônicos/genética , Petromyzon/genética , Animais , Genômica , Rede Nervosa/fisiologia
4.
J Neurophysiol ; 117(1): 215-229, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27760818

RESUMO

Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3-5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY: In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results. Thus, after disruption of long-axon projections from RS neurons in the lamprey, descending propriospinal (PS) neurons appear to be a viable compensatory mechanism for indirect activation of spinal locomotor networks.


Assuntos
Geradores de Padrão Central/patologia , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Propriocepção/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Fenômenos Biomecânicos , Simulação por Computador , Modelos Animais de Doenças , Lateralidade Funcional/fisiologia , Peroxidase do Rábano Silvestre/metabolismo , Lampreias , Locomoção/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiopatologia , Rede Nervosa/fisiologia , Traumatismos da Medula Espinal/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...